Synergistic Stabilization of Nanoemulsion Using Nonionic Surfactants and Salt-Sensitive Cellulose Nanocrystals

非离子表面活性剂和盐敏性纤维素纳米晶体对纳米乳液的协同稳定作用

阅读:8
作者:Lingling Liu, Kyle A E Abiol, Mason A Friest, Kaleb D Fisher

Abstract

Soybean stover is a lignocellulose biomass that is rich in cellulose. In the present study, soybean cellulose nanocrystals (CNCs) were prepared from soybean stover by alkaline treatment, bleaching treatment, acid hydrolysis, dialysis and ultrasonication. The as-prepared soybean CNC was characterized by transmission electron microscopy (TEM), zetasizer and rheometer. The effects of NaCl on the particle size, zeta potential, and viscosity of soybean CNC was studied. Soybean CNC was explored as an emulsion stabilizer for lemongrass-essential-oil-loaded emulsions. Soybean CNCs could stabilize the oil-in-water emulsion against coalescence but not flocculation. The addition of NaCl reduced the creaming index and enhanced the encapsulation efficiency and freeze-thaw stability of the CNC-stabilized emulsion. Salted CNC (i.e., CNC in the presence of NaCl) enhanced the thermodynamic stability (i.e., heating-cooling and freeze-thaw stability) of Tween 80 stabilized emulsion, while unsalted CNC did not. Synergistic effects existed between Tween 80 and salted CNC in stabilizing oil-in-water emulsions. The nanoemulsion stabilized with Tween 80 and salted CNC had a mean particle size of ~70 nm, and it was stable against all thermodynamic stability tests. This is the first study to report the synergistic interaction between salted CNC and small molecular weight surfactants (e.g., Tween 80) to improve the thermodynamic stability of nanoemulsion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。