Immobilization protects enzymes from plasma-mediated inactivation

固定化可防止酶因血浆介导而失活

阅读:7
作者:Tim Dirks, Abdulkadir Yayci, Sabrina Klopsch, Marco Krewing, Wuyuan Zhang, Frank Hollmann, Julia E Bandow

Abstract

Non-thermal plasmas are used in various applications to inactivate biological agents or biomolecules. A complex cocktail of reactive species, (vacuum) UV radiation and in some cases exposure to an electric field together cause the detrimental effects. In contrast to this disruptive property of technical plasmas, we have shown previously that it is possible to use non-thermal plasma-generated species such as H2O2 as cosubstrates in biocatalytic reactions. One of the main limitations in plasma-driven biocatalysis is the relatively short enzyme lifetime under plasma-operating conditions. This challenge could be overcome by immobilizing the enzymes on inert carrier materials. Here, we tested whether immobilization is suited to protect proteins from inactivation by plasma. To this end, using a dielectric barrier discharge device (PlasmaDerm), plasma stability was tested for five enzymes immobilized on ten different carrier materials. A comparative analysis of the treatment times needed to reduce enzyme activity of immobilized and free enzyme by 30% showed a maximum increase by a factor of 44. Covalent immobilization on a partly hydrophobic carrier surface proved most effective. We conclude from the study, that immobilization universally protects enzymes under plasma-operating conditions, paving the way for new emerging applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。