Printable Hydrogels Based on Alginate and Halloysite Nanotubes

基于海藻酸盐和埃洛石纳米管的可打印水凝胶

阅读:5
作者:Giuseppe Cavallaro, Lorenzo Lisuzzo, Giuseppe Lazzara, Stefana Milioto

Abstract

The design of hydrogels for the controlled release of active species is an attractive challenge. In this work, we prepared hybrid hydrogels composed of halloysite nanotubes as the inorganic component, and alginate as the organic counterpart. The reported procedure allowed us to provide the resulting materials with a peculiar wire-like shape. Both optical and scanning electron microscopy were used to characterize the morphological properties of the hydrogel wires, whose diameters were ca. 0.19 and 0.47 mm, respectively. The possibility to be exploited as drug delivery systems was carried out by loading the nanoclay with salicylic acid and by studying the release profiles. Thermogravimetric experiments showed that the amount of encapsulated drug was 4.35 wt%, and the salicylic acid was thermally stabilized after the loading into the nanotubes, as observed by the shift of the degradation peak in the differential thermograms from 193 to 267 °C. The kinetics investigation was conducted using UV-Vis spectrophotometry, and it exhibited the profound effects of both the morphology and dimensions on the release of the drugs. In particular, the release of 50% of the payload occurred in 6 and 10 h for the filiform hydrogels, and it was slower compared to the bare drug-loaded halloysite, which occurred in 2 h. Finally, an induction period of 2 h was observed in the release profile from the thicker sample.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。