Impact of MET inhibition on small-cell lung cancer cells showing aberrant activation of the hepatocyte growth factor/MET pathway

MET 抑制对肝细胞生长因子/MET 通路异常激活的小细胞肺癌细胞的影响

阅读:7
作者:Hirokazu Taniguchi, Tadaaki Yamada, Shinji Takeuchi, Sachiko Arai, Koji Fukuda, Shuichi Sakamoto, Manabu Kawada, Hiroyuki Yamaguchi, Hiroshi Mukae, Seiji Yano

Abstract

Small-cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers, and is characterized as extremely aggressive, often displaying rapid tumor growth and multiple organ metastases. In addition, the clinical outcome of SCLC patients is poor due to early relapse and acquired resistance to standard chemotherapy treatments. Hence, novel therapeutic strategies for the treatment of SCLC are urgently required. Accordingly, several molecular targeted therapies were evaluated in SCLC; however, they failed to improve the clinical outcome. The receptor tyrosine kinase MET is a receptor for hepatocyte growth factor (HGF), and aberrant activation of HGF/MET signaling is known as one of the crucial mechanisms enabling cancer progression and invasion. Here, we found that the HGF/MET signaling was aberrantly activated in chemoresistant or chemorelapsed SCLC cell lines (SBC-5, DMS273, and DMS273-G3H) by the secretion of HGF and/or MET copy number gain. A cell-based in vitro assay revealed that HGF/MET inhibition, induced either by MET inhibitors (crizotinib and golvatinib), or by siRNA-mediated knockdown of HGF or MET, constrained growth of chemoresistant SCLC cells through the inhibition of ERK and AKT signals. Furthermore, treatment with either crizotinib or golvatinib suppressed the systemic metastasis of SBC-5 cell tumors in natural killer cell-depleted SCID mice, predominantly through cell cycle arrest. These findings reveal the therapeutic potential of targeting the HGF/MET pathway for inhibition, to constrain tumor progression of SCLC cells showing aberrant activation of HGF/MET signaling. We suggest that it would be clinically valuable to further investigate HGF/MET-mediated signaling in SCLC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。