A microfluidic platform for drug screening in a 3D cancer microenvironment

用于 3D 癌症微环境中药物筛选的微流体平台

阅读:5
作者:Hardik J Pandya, Karan Dhingra, Devbalaji Prabhakar, Vineethkrishna Chandrasekar, Siva Kumar Natarajan, Anish S Vasan, Ashish Kulkarni, Hadi Shafiee

Abstract

Development of resistance to chemotherapy treatments is a major challenge in the battle against cancer. Although a vast repertoire of chemotherapeutics is currently available for treating cancer, a technique for rapidly identifying the right drug based on the chemo-resistivity of the cancer cells is not available and it currently takes weeks to months to evaluate the response of cancer patients to a drug. A sensitive, low-cost diagnostic assay capable of rapidly evaluating the effect of a series of drugs on cancer cells can significantly change the paradigm in cancer treatment management. Integration of microfluidics and electrical sensing modality in a 3D tumour microenvironment may provide a powerful platform to tackle this issue. Here, we report a 3D microfluidic platform that could be potentially used for a real-time deterministic analysis of the success rate of a chemotherapeutic drug in less than 12h. The platform (66mm×50mm; L×W) is integrated with the microsensors (interdigitated gold electrodes with width and spacing 10µm) that can measure the change in the electrical response of cancer cells seeded in a 3D extra cellular matrix when a chemotherapeutic drug is flown next to the matrix. B16-F10 mouse melanoma, 4T1 mouse breast cancer, and DU 145 human prostate cancer cells were used as clinical models. The change in impedance magnitude on flowing chemotherapeutics drugs measured at 12h for drug-susceptible and drug tolerant breast cancer cells compared to control were 50,552±144 Ω and 28,786±233 Ω, respectively, while that of drug-susceptible melanoma cells were 40,197±222 Ω and 4069±79 Ω, respectively. In case of prostate cancer the impedance change between susceptible and resistant cells were 8971±1515 Ω and 3281±429 Ω, respectively, which demonstrated that the microfluidic platform was capable of delineating drug susceptible cells, drug tolerant, and drug resistant cells in less than 12h.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。