A protocol for high-throughput, untargeted forest community metabolomics using mass spectrometry molecular networks

利用质谱分子网络进行高通量、非靶向森林群落代谢组学的协议

阅读:4
作者:Brian E Sedio, Cristopher A Boya P, Juan Camilo Rojas Echeverri

Conclusions

Our workflow is able to generate molecular networks of hundreds of thousands of compounds representing broad classes of plant secondary chemistry and a wide range of molecular masses, from 100 to 2500 daltons, making possible large-scale comparative metabolomics, as well as studies of chemical community ecology and macroevolution in plants.

Results

A total of 613 leaf samples from 204 tree species was collected in the field and analyzed using UHPLC-MS/MS. Matching of molecular fragmentation spectra generated over 125,000 consensus spectra representing unique molecular structures, 26,410 of which were linked to at least one structurally similar compound. Conclusions: Our workflow is able to generate molecular networks of hundreds of thousands of compounds representing broad classes of plant secondary chemistry and a wide range of molecular masses, from 100 to 2500 daltons, making possible large-scale comparative metabolomics, as well as studies of chemical community ecology and macroevolution in plants.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。