The amygdala central nucleus is required for acute stress-induced bladder hyperalgesia in a rat visceral pain model

在大鼠内脏痛模型中,杏仁核中央核是急性应激诱发的膀胱痛觉过敏所必需的

阅读:13
作者:Jennifer J DeBerry, Meredith T Robbins, Timothy J Ness

Abstract

Chronic stress has been implicated in the pathogenesis of chronic visceral pain conditions, such as interstitial cystitis (IC), and bouts of acute stress exacerbate clinical urological pain. Studies using animal models have shown that exposure to chronic footshock stress augments reflex responses to urinary bladder distension (UBD) in animal models, however acute effects in animal models are largely unknown, as are the central nervous system mechanisms of stress-related increases in nociception. The amygdala is a salient structure for integration of sensory and cognitive/emotional factors. The present study determined the role of the central nucleus of the amygdala (CeA) in stress-related bladder hypersensitivity. We examined the effects of CeA manipulations (lesions and chemical stimulation) on visceromotor responses (abdominal muscle contractions) to UBD in adult, female Sprague-Dawley rats. We report that acute footshock stress produces bladder hyperalgesia that can be prevented by bilateral CeA lesions, despite no effect of lesions on baseline somatic sensation, as indicated by flinch/jump thresholds to electrical shock. Further, acute glucocorticoid stimulation of the CeA recapitulated stress-induced hyperalgesia. Of note is that CeA lesions, but not chemical stimulation, significantly affected HPA axis activation, as indicated by measurements of circulating corticosterone. Our findings conclusively show that the CeA is necessary for the generation of bladder hyperalgesia in response to acute stress. The CeA may play multiple stress-related roles in nociceptive modulation, i.e., via direct facilitation of the HPA axis during acute stress, or via modulation of other systems that augment acute stress responsiveness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。