In Situ RheoNMR Correlation of Polymer Segmental Mobility with Mechanical Properties during Hydrogel Synthesis

水凝胶合成过程中聚合物链段流动性与机械性能的原位 RheoNMR 关联

阅读:7
作者:Christian Fengler, Jonas Keller, Karl-Friedrich Ratzsch, Manfred Wilhelm

Abstract

Understanding polymer gelation over multiple length-scales is crucial to develop advanced materials. An experimental setup is developed that combines rheological measurements with simultaneous time-domain 1 H NMR relaxometry (TD-NMR) techniques, which are used to study molecular motion (<10 nm) in soft matter. This so-called low-field RheoNMR setup is used to study the impact of varying degrees of crosslinking (DC) on the gelation kinetics of acrylic acid (AAc) and N,N'-methylene bisacrylamide (MBA) free radical crosslinking copolymerization. A stretched exponential function describes the T2 relaxation curves throughout the gelation process. The stretching exponent β decreases from 0.90 to 0.67 as a function of increasing DC, suggesting an increase in network heterogeneity with a broad T2 distribution at higher DC. The inverse correlation of the elastic modulus G' with T2 relaxation times reveals a pronounced molecular rigidity for higher DC at early gelation times, indicating the formation of inelastic, rigid domains such as crosslinking clusters. The authors further correlate G' with the polymer concentration during gelation using a T1 filter for solvent suppression. A characteristic scaling exponent of 2.3 is found, which is in agreement with theoretical predictions of G' based on the confining tube model in semi-dilute entangled polymer solutions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。