Atg5-deficient mesenchymal stem cells protect against non-alcoholic fatty liver by accelerating hepatocyte growth factor secretion

Atg5 缺陷型间充质干细胞通过加速肝细胞生长因子分泌来预防非酒精性脂肪肝

阅读:5
作者:Caifeng Zhang, Juanjuan Ji, Xuefang Du, Lanfang Zhang, Yaxuan Song, Yuyu Wang, Yanan Jiang, Ke Li, Tingmin Chang

Aims

Mesenchymal stem cells (MSCs) have shown promising therapeutic potential in treating liver diseases, such as non-alcoholic fatty liver disease (NAFLD). Genetic modification has been employed to enhance the characteristics of MSCs for more effective disease treatment. Here, we present findings on human adipose-derived MSCs with Atg5 deficiency, investigating their therapeutic impact and the associated mechanisms in NAFLD.

Background/aims

Mesenchymal stem cells (MSCs) have shown promising therapeutic potential in treating liver diseases, such as non-alcoholic fatty liver disease (NAFLD). Genetic modification has been employed to enhance the characteristics of MSCs for more effective disease treatment. Here, we present findings on human adipose-derived MSCs with Atg5 deficiency, investigating their therapeutic impact and the associated mechanisms in NAFLD.

Conclusions

Our research findings suggest that Atg5-deficient MSCs protect against NAFLD by accelerating HGF secretion. This indicates that Atg5 gene-modified MSCs may represent a promising strategy for treating NAFLD.

Methods

In vitro, lentiviral transduction was employed to downregulate Atg5 or HGF in human adipose-derived MSCs using short hairpin RNA (shRNA). Subsequently, experiments were conducted to evaluate cell senescence, proliferation, cell cycle, apoptosis, and other pertinent aspects. In vivo, a non-alcoholic fatty liver mouse model was established by feeding them a high-fat diet (HFD), and the effects of MSCs transplantation were assessed through serological, biochemical, and pathological analyses.

Results

Our research findings indicate that Atg5-deficient MSCs display heightened proliferative activity. Subsequent co-culturing of MSCs with hepatocytes and the transplantation of Atg5-deficient MSCs into NAFLD mouse models demonstrated their ability to effectively reduce lipid accumulation in the NAFLD disease model by modulating the AMPKα/mTOR/S6K/Srebp1 pathway. Furthermore, we observed that Atg5 deficiency enhances the secretion of hepatocyte growth factor (HGF) by promoting recycling endosome (RE) production. Lastly, our study revealed that 3-MA-primed MSCs can improve the characteristics of NAFLD by boosting the secretion of HGF. Conclusions: Our research findings suggest that Atg5-deficient MSCs protect against NAFLD by accelerating HGF secretion. This indicates that Atg5 gene-modified MSCs may represent a promising strategy for treating NAFLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。