An Asymmetric Microfluidic/Chitosan Device for Sustained Drug Release in Guided Bone Regeneration Applications

一种用于引导骨再生应用中持续释放药物的非对称微流体/壳聚糖装置

阅读:4
作者:Xin Shi, Beibei Ma, Hongyu Chen, Wei Tan, Shiqing Ma, Guorui Zhu

Abstract

One of the major challenges of guided bone regeneration (GBR) is infections caused by pathogen colonization at wound sites. In this paper, an asymmetric microfluidic/chitosan device was developed to release drugs to inhibit infections and to ensure that guided bone regeneration can be realized. The microfluidic technique was introduced into the GBR membrane for the first time, which demonstrated more controllable drug release, more flexible clinical use and had a lower cost compared with surface treatments and embedded nanoparticles. Based on the theory of diffusion and Fick’s first law, the contact area and concentration gradient were adjusted to realize sustained drug release. The standard deviation of minocycline release over 5 days was only 12.7%, which was lower than the joint effect of porous chitosan discs and nanospheres. The in vitro experiments against E. coli and Streptococcus mutans showed the excellent antibacterial performance of the device (>95%). The in vitro experiments for fibroblasts at the microfluidic side and osteoblasts at the chitosan side showed the satisfactory biocompatibility and the ability of the device to enhance bone regeneration. Therefore, this microfluidic/chitosan device is a promising therapeutic approach to prevent infection and guide bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。