A new 68Ga-labeled somatostatin analog containing two iodo-amino acids for dual somatostatin receptor subtype 2 and 5 targeting

一种新的 68Ga 标记生长抑素类似物,含有两个碘氨基酸,用于双重生长抑素受体亚型 2 和 5 靶向

阅读:9
作者:Rosalba Mansi, Karim Abid, Guillaume P Nicolas, Luigi Del Pozzo, Eric Grouzmann, Melpomeni Fani

Background

Somatostatin receptor (SST) targeting, specifically of the subtype 2 (SST2), with radiolabeled somatostatin analogs, is established for imaging and treatment of neuroendocrine tumors. Owing to the concomitant and heterogeneous expression of several subtypes on the same tumor, analogs targeting more subtypes than SST2 potentially target a broader spectrum of tumors and/or increase the uptake of a given tumor. The analog ST8950 ((4-amino-3-iodo)-D-Phe-c[Cys-(3-iodo)-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2), bearing 2 iodo-amino acids, exhibits sub-nanomolar affinity to SST2 and SST5. We report herein the development and preclinical evaluation of DOTA-ST8950 labeled with 68Ga, for imaging SST2- and SST5-expressing tumors. Comparative in vitro and in vivo studies were performed with the de-iodinated DOTA-ST8951 ((4-amino)-D-Phe-c[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2) and with the reference compounds DOTA-TATE (SST2 selective) and DOTA-NOC (for SST2 and SST5).

Conclusions

[68Ga]Ga-DOTA-ST8950 reveals its potential for PET imaging SST2- and SST5-expressing tumors. It compares favorably with the clinically used [68Ga]Ga-DOTA-NOC in terms of tumor uptake; however, its uptake in the liver remains a challenge for clinical translation. In addition, this study reveals the essential role of the iodo-substitutions in positions 1 and 3 of [68Ga]Ga-DOTA-ST8950 for maintaining affinity to SST2 and SST5, as the de-iodinated [68Ga]Ga-DOTA-ST8951 lost affinity for both receptor subtypes.

Results

Compared with natGa-DOTA-NOC, natGa-DOTA-ST8950 exhibited higher affinity to SST2 and SST5 (IC50 (95%CI), nM = 0.32 (0.20-0.50) and 1.9 (1.1-3.1) vs 0.70 (0.50-0.96) and 3.4 (1.8-6.2), respectively), while natGa-DOTA-ST8951 lost affinity for both subtypes. natGa-DOTA-ST8950 had the same potency for inducing SST2-mediated cAMP accumulation as natGa-DOTA-TATE and slightly better than natGa-DOTA-NOC (EC50, nM = 0.46 (0.23-0.92) vs 0.47 (0.15-1.5) vs 0.59 (0.18-1.9), respectively). [67Ga]Ga-DOTA-ST8950 had a similar internalization rate as [67Ga]Ga-DOTA-NOC in SST2-expressing cells (12.4 ± 1.6% vs 16.6 ± 2.2%, at 4 h, p = 0.0586). In vivo, [68Ga]Ga-DOTA-ST8950 showed high and specific accumulation in SST2- and SST5-expressing tumors, comparable with [68Ga]Ga-DOTA-NOC (26 ± 8 vs 30 ± 8 %IA/g, p = 0.4630 for SST2 and 15 ± 6 vs 12 ± 5 %IA/g, p = 0.3282, for SST5, 1 h p.i.) and accumulation in the SST-positive tissues, the kidneys and the liver. PET/CT images of [68Ga]Ga-DOTA-ST8950, performed in a dual HEK-SST2 and HEK-SST5 tumor xenografted model, clearly visualized both tumors and illustrated high tumor-to-background contrast. Conclusions: [68Ga]Ga-DOTA-ST8950 reveals its potential for PET imaging SST2- and SST5-expressing tumors. It compares favorably with the clinically used [68Ga]Ga-DOTA-NOC in terms of tumor uptake; however, its uptake in the liver remains a challenge for clinical translation. In addition, this study reveals the essential role of the iodo-substitutions in positions 1 and 3 of [68Ga]Ga-DOTA-ST8950 for maintaining affinity to SST2 and SST5, as the de-iodinated [68Ga]Ga-DOTA-ST8951 lost affinity for both receptor subtypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。