CSF1R Inhibition Combined with GM-CSF Reprograms Macrophages and Disrupts Protumoral Interplays with AML Cells

CSF1R 抑制剂与 GM-CSF 联合使用可重新编程巨噬细胞并破坏与 AML 细胞的促肿瘤相互作用

阅读:8
作者:Tatiana Smirnova, Caroline Spertini, Olivier Spertini

Abstract

Relapse is a major issue in acute myeloid leukemia (AML) and while the contribution of gene mutations in developing drug resistance is well established, little is known on the role of macrophages (MΦs) in an AML cell microenvironment. We examined whether myeloblasts could educate MΦs to adopt a protumoral orientation supporting myeloblast survival and resistance to therapy. Flow cytometry analyses demonstrated that M2-like CD163+ MΦs are abundantly present, at diagnosis, in the bone marrow of AML patients. We showed that myeloblasts, or their conditioned medium, polarize monocytes to M2-like CD163+ MΦs, induce the secretion of many protumoral factors, and promote myeloblast survival and proliferation as long as close intercellular contacts are maintained. Importantly, pharmacologic inhibition of the CSF1 receptor (CSF1R), in the presence of GM-CSF, reprogrammed MΦ polarization to an M1-like orientation, induced the secretion of soluble factors with antitumoral activities, reduced protumoral agonists, and promoted the apoptosis of myeloblasts interacting with MΦs. Furthermore, myeloblasts, which became resistant to venetoclax or midostaurin during their interplay with protumoral CD163+ MΦs, regained sensitivity to these targeted therapies following CSF1R inhibition in the presence of GM-CSF. These data reveal a crucial role of CD163+ MΦ interactions with myeloblasts that promote myeloblast survival and identify CSF1R inhibition as a novel target for AML therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。