Interleukin-1 receptor antagonist inhibits matastatic potential by down-regulating CXCL12/CXCR4 signaling axis in colorectal cancer

白细胞介素-1受体拮抗剂通过下调CXCL12 / CXCR4信号轴抑制结直肠癌的转移潜能

阅读:9
作者:Jiachi Ma #, Wanqing Liang #, Yaosheng Qiang, Lei Li, Jun Du, Chengwu Pan, Bangling Chen, Chensong Zhang, Yuzhong Chen, Qingkang Wang

Background

The

Conclusion

Autocrine IL-1α and paracrine CXCL12 co-enhances the metastatic potential of colorectal cancer cells; IL-1Ra can inhibit the metastatic potential of colorectal cancer cells via decrease IL-1α/CXCR4/CXCL12 signaling pathways. Video Abstract.

Methods

Expression of IL-1α, interleukin-1 receptor type I (IL-1 RI), CXCL12 and CXCR4 mRNA and proteins were determined by RT-PCR and Western blot. The effect of secreted level of CXCL12 by IL-1Ra on fibroblasts was measured by ELISA. CXCL12 regulate metastatic potential of colorectal cancer was evaluated by proliferation, invasion and angiogenesis assays, respectively, in which invasion and angiogenesis assays used an in vitro system consisting of co-cultured colorectal cells and stromal cells.

Results

IL-1α was expressed in high liver metastatic colorectal cancer cell lines (HT-29 and WiDr). The colorectal cancer cell-derived IL-1α and rIL-1α significantly promoted CXCL12 expression by fibroblasts, and this enhancing effect can be significantly inhibited by IL-1Ra (P < 0.01). CXCL12 not only enhanced the migration and proliferation of human umbilical vein endothelial cells, but also significantly enhanced angiogenesis (P < 0.01). Furthermore, the high liver-metastatic colorectal cancer cell line (HT-29), which secretes IL-1α, significantly enhanced angiogenesis compared to the low liver-metastatic cell line (CaCo-2), which does not produce IL-1α (P < 0.01). On the contrary, IL-1Ra can significantly inhibit migration, proliferation and angiogenesis (P < 0.01).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。