Energetic-Materials-Driven Synthesis of Graphene-Encapsulated Tin Oxide Nanoparticles for Sodium-Ion Batteries

用于钠离子电池的石墨烯包覆氧化锡纳米粒子的能量材料驱动合成

阅读:8
作者:Yingchun Wang, Jinxu Liu, Min Yang, Lijuan Hou, Tingting Xu, Shukui Li, Zhihua Zhuang, Chuan He

Abstract

By evenly mixing polytetrafluoroethylene-silicon energetic materials (PTFE-Si EMs) with tin oxide (SnO2) particles, we demonstrate a direct synthesis of graphene-encapsulated SnO2 (Gr-SnO2) nanoparticles through the self-propagated exothermic reaction of the EMs. The highly exothermic reaction of the PTFE-Si EMs released a huge amount of heat that induced an instantaneous temperature rise at the reaction zone, and the rapid expansion of the gaseous SiF4 product provided a high-speed gas flow for dispersing the molten particles into finer nanoscale particles. Furthermore, the reaction of the PTFE-NPs with Si resulted in a simultaneous synthesis of graphene that encapsulated the SnO2 nanoparticles in order to form the core-shell nanostructure. As sodium storage material, the graphene-encapsulated SnO2 nanoparticles exhibit a good cycling performance, superior rate capability, and a high initial Coulombic efficiency of 85.3%. This proves the effectiveness of our approach for the scalable synthesis of core-shell-structured graphene-encapsulated nanomaterials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。