High-Throughput Single-Molecule Sensors: How Can the Signals Be Analyzed in Real Time for Achieving Real-Time Continuous Biosensing?

高通量单分子传感器:如何实时分析信号以实现实时连续生物传感?

阅读:6
作者:Max H Bergkamp, Sebastian Cajigas, Leo J van IJzendoorn, Menno W J Prins

Abstract

Single-molecule sensors collect statistics of single-molecule interactions, and the resulting data can be used to determine concentrations of analyte molecules. The assays are generally end-point assays and are not designed for continuous biosensing. For continuous biosensing, a single-molecule sensor needs to be reversible, and the signals should be analyzed in real time in order to continuously report output signals, with a well-controlled time delay and measurement precision. Here, we describe a signal processing architecture for real-time continuous biosensing based on high-throughput single-molecule sensors. The key aspect of the architecture is the parallel computation of multiple measurement blocks that enables continuous measurements over an endless time span. Continuous biosensing is demonstrated for a single-molecule sensor with 10,000 individual particles that are tracked as a function of time. The continuous analysis includes particle identification, particle tracking, drift correction, and detection of the discrete timepoints where individual particles switch between bound and unbound states, yielding state transition statistics that relate to the analyte concentration in solution. The continuous real-time sensing and computation were studied for a reversible cortisol competitive immunosensor, showing how the precision and time delay of cortisol monitoring are controlled by the number of analyzed particles and the size of the measurement blocks. Finally, we discuss how the presented signal processing architecture can be applied to various single-molecule measurement methods, allowing these to be developed into continuous biosensors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。