Poly(ADP-ribosyl)ation of acetyltransferase NAT10 by PARP1 is required for its nucleoplasmic translocation and function in response to DNA damage

PARP1 对乙酰转移酶 NAT10 进行聚(ADP-核糖基化)是其核质转位和响应 DNA 损伤发挥作用所必需的

阅读:9
作者:Hong-Yi Liu #, Ying-Ying Liu #, Yin-Ling Zhang, Yan Ning, Fang-Lin Zhang, Da-Qiang Li

Background

N-acetyltransferase 10 (NAT10), an abundant nucleolar protein with both lysine and RNA cytidine acetyltransferase activities, has been implicated in Hutchinson-Gilford progeria syndrome and human cancer. We and others recently demonstrated that NAT10 is translocated from the nucleolus to the nucleoplasm after DNA damage, but the underlying mechanism remains unexplored.

Conclusion

Collectively, these findings indicate that PARP1-mediated PARylation of NAT10 is key for controlling its nucleoplasmic translocation and function in response to DNA damage. Moreover, our findings provide novel mechanistic insights into the sophisticated paradigm of the posttranslational modification-driven cellular response to DNA damage. Video Abstract.

Methods

The NAT10 and PARP1 knockout (KO) cell lines were generated using CRISPR-Cas9 technology. Knockdown of PARP1 was performed using specific small interfering RNAs targeting PARP1. Cells were irradiated with γ-rays using a 137Cs Gammacell-40 irradiator and subjected to clonogenic survival assays. Co-localization and interaction between NAT10 and MORC2 were examined by immunofluorescent staining and immunoprecipitation assays, respectively. PARylation of NAT10 and translocation of NAT10 were determined by in vitro PARylation assays and immunofluorescent staining, respectively.

Results

Here, we provide the first evidence that NAT10 underwent covalent PARylation modification following DNA damage, and poly (ADP-ribose) polymerase 1 (PARP1) catalyzed PARylation of NAT10 on three conserved lysine (K) residues (K1016, K1017, and K1020) within its C-terminal nucleolar localization signal motif (residues 983-1025). Notably, mutation of those three PARylation residues on NAT10, pharmacological inhibition of PARP1 activity, or depletion of PARP1 impaired NAT10 nucleoplasmic translocation after DNA damage. Knockdown or inhibition of PARP1 or expression of a PARylation-deficient mutant NAT10 (K3A) attenuated the co-localization and interaction of NAT10 with MORC family CW-type zinc finger 2 (MORC2), a newly identified chromatin-remodeling enzyme involved in DNA damage response, resulting in a decrease in DNA damage-induced MORC2 acetylation at lysine 767. Consequently, expression of a PARylation-defective mutant NAT10 resulted in enhanced cellular sensitivity to DNA damage agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。