Phase Composition Control in Microsphere-Supported Biomembrane Systems

微球支撑生物膜系统中的相组成控制

阅读:8
作者:Eric S Fried, Yue-Ming Li, M Lane Gilchrist

Abstract

The popularization of studies in membrane protein lipid phase coexistence has prompted the development of new techniques to construct and study biomimetic systems with cholesterol-rich lipid microdomains. Here, microsphere-supported biomembranes with integrated α-helical peptides, referred to as proteolipobeads (PLBs), were used to model peptide/protein partitioning within DOPC/DPPC/cholesterol phase-separated membranes. Due to the appearance of compositional heterogeneity and impurities in the formation of model PLB assemblies, fluorescence-activated cell sorting (FACS) was used to characterize and sort PLB populations on the basis of disordered phase (Ld) content. In addition, spectral imaging was used to assess the partitioning of FITC-labeled α-helical peptide between fluorescently labeled Ld phase and unlabeled ordered phase (Lo) phase lipid microdomains. The apparent peptide partition coefficient, Kp,app, was measured to be 0.89 ± 0.06, indicating a slight preference of the peptide for the Lo phase. A biomimetic motif of the Lo phase concentration enhancement of the biotinyl-peptide ligand display in proteolipobeads was also observed. Finally, peptide mobility was measured by FRAP separately in each lipid phase, yielding diffusivities of 0.036 ± 0.005 and 0.014 ± 0.003 μm2/s in the Ld and Lo phases, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。