Site-specific PEGylation of engineered cysteine analogues of recombinant human granulocyte-macrophage colony-stimulating factor

重组人粒细胞巨噬细胞集落刺激因子工程半胱氨酸类似物的位点聚乙二醇化

阅读:5
作者:Daniel H Doherty, Mary S Rosendahl, Darin J Smith, Jennifer M Hughes, Elizabeth A Chlipala, George N Cox

Abstract

Granulocyte macrophage colony-stimulating factor (GM-CSF) stimulates proliferation of hematopoietic cells of the macrophage and granulocyte lineages and is used clinically to treat neutropenia and other myeloid disorders. Because of its short circulating half-life, GM-CSF is administered to patients by daily injection. We describe here the engineering of highly potent, long-acting human GM-CSF proteins through site-specific modification of GM-CSF cysteine analogues with a cysteine-reactive poly(ethylene glycol) (PEG) reagent. Thirteen cysteine analogues of GM-CSF were constructed, primarily in nonhelical regions of the protein believed to lie away from the major receptor binding sites. The GM-CSF cysteine analogues were properly processed but insoluble following secretion into the Escherichia coli periplasm. The proteins were refolded and purified by column chromatography. Ten of the cysteine analogues could be modified with a 5-kDa maleimide PEG, and seven of the mono-PEGylated proteins were purified by ion-exchange column chromatography. Biological activities of the 13 cysteine analogues and 7 PEGylated cysteine analogues were comparable to that of wild-type GM-CSF in an in vitro cell proliferation assay using human TF-1 cells. One cysteine analogue was modified with larger 10-, 20-, and 40-kDa PEGs, with only minimal loss of in vitro bioactivity. Pharmacokinetic experiments in rats demonstrated that the PEGylated proteins had up to 47-fold longer circulating half-lives than wild-type GM-CSF. These data demonstrate the utility of site-specific PEGylation for creating highly potent, long-acting GM-CSF analogues and provide further evidence that the nonhelical regions of human GM-CSF examined are largely nonessential for biological activity of the protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。