Thermal and Mechanical Characterization of an Aeronautical Graded Epoxy Resin Loaded with Hybrid Nanoparticles

载有混合纳米粒子的航空级环氧树脂的热性能和机械性能

阅读:7
作者:Aldobenedetto Zotti, Simona Zuppolini, Anna Borriello, Mauro Zarrelli

Abstract

Synthesized silica nanoparticles (SiO2) were coated with a thin polydopamine (PDA) shell by a modified one-step procedure leading to PDA coated silica nanoparticles (SiO2@PDA). Core-shell (CSNPs) characterization revealed 15 nm thickness of PDA shell surrounding the SiO2 core (~270 nm in diameter). Different weight percentages of CSNPs were employed as filler to enhance the final properties of an aeronautical epoxy resin (RTM6) commonly used as matrix to manufacture structural composites. RTM6/SiO2@PDA nanocomposites were experimentally characterized in terms of thermal stability and mechanical performances to assess the induced effects by the synthesized CSNPs on pristine matrix. Thermal stability was investigated by thermogravimetry and data were modelled by the Doyle model and Kissinger methods. An overall enhancement in thermal stability was achieved and clearly highlighted by modelling results. Dynamic Mechanical Analysis has revealed an improvement in the nanocomposite performances compared to the neat matrix, with an increase in the glassy (+9.5%) and rubbery moduli (+32%) as well as glass transition temperature (+10 °C). Fracture Toughness tests confirmed the positive effect in damage resistance compared to unloaded resin with an impressive variation in critical stress intensity factor (KIC) and critical strain energy (GIC) of about 60% and 138%, respectively, with the highest SiO2@PDA content.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。