Alternating air-medium exposure in rotating bioreactors optimizes cell metabolism in 3D novel tubular scaffold polyurethane foams

旋转生物反应器中交替的空气介质暴露优化了三维新型管状支架聚氨酯泡沫中的细胞代谢

阅读:6
作者:Claudia Tresoldi, Ilaria Stefani, Gaia Ferracci, Serena Bertoldi, Alessandro F Pellegata, Silvia Farè, Sara Mantero

Background

In vitro dynamic culture conditions play a pivotal role in developing engineered tissue grafts, where the supply of oxygen and nutrients, and waste removal must be permitted within construct thickness. For tubular scaffolds, mass transfer is enhanced by introducing a convective flow through rotating bioreactors with positive effects on cell proliferation, scaffold colonization and extracellular matrix deposition. We characterized a novel polyurethane-based tubular scaffold and investigated the impact of 3 different culture configurations over cell behavior: dynamic (i) single-phase (medium) rotation and (ii) double-phase exposure (medium-air) rotation; static (iii) single-phase static culture as control.

Conclusions

The developed 3D structure combined with the alternated exposure to air and medium provided the optimal in vitro biochemical conditioning with adequate nutrient supply for cells. The results highlight a valuable combination of material and dynamic culture for tissue engineering applications.

Methods

A new mixture of polyol was tested to create polyurethane foams (PUFs) as 3D scaffold for tissue engineering. The structure obtained was morphologically and mechanically analyzed tested. Murine fibroblasts were externally seeded on the novel porous PUF scaffold, and cultured under different dynamic conditions. Viability assay, DNA quantification, SEM and histological analyses were performed at different time points.

Results

The PUF scaffold presented interesting mechanical properties and morphology adequate to promote cell adhesion, highlighting its potential for tissue engineering purposes. Results showed that constructs under dynamic conditions contain enhanced viability and cell number, exponentially increased for double-phase rotation; under this last configuration, cells uniformly covered both the external surface and the lumen. Conclusions: The developed 3D structure combined with the alternated exposure to air and medium provided the optimal in vitro biochemical conditioning with adequate nutrient supply for cells. The results highlight a valuable combination of material and dynamic culture for tissue engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。