TARGETING S100A9-TLR2 AXIS CONTROLS MACROPHAGE NLRP3 INFLAMMASOME ACTIVATION IN FATTY LIVER ISCHEMIA REPERFUSION INJURY

靶向 S100A9-TLR2 轴控制脂肪肝缺血再灌注损伤中巨噬细胞 NLRP3 炎症小体的激活

阅读:3
作者:Mingwei Sheng, Weihua Liu, Yingli Cao, Shixuan Wang, Yuanbang Lin, Wenli Yu

Abstract

Liver ischemia reperfusion (IR) injury significantly impacts clinical outcomes by increasing the risk of hepatic dysfunction after liver surgery. Fatty livers are more susceptible to IR stress. Recent studies have demonstrated that S100A9 plays a crucial role in both IR injury and the progression of liver steatosis. Nevertheless, the precise mechanisms underlying these effects remain unclear. In our study, transcriptome analysis of fatty livers subjected to IR insult in mice identified S100A9 as an important mediator. Employing loss-of-function approaches, we investigated the immune regulatory function of S100A9 and its downstream signaling in fatty liver IR injury. As expected, S100A9 emerged as one of the most significantly upregulated genes during the reperfusion stage in fatty livers. Genetic knockdown of S100A9 markedly ameliorated liver pathological damage, evidenced by reduced macrophage/neutrophil infiltration as well as the decreased expression of proinflammatory factors. Transcriptome/functional studies revealed that S100A9 triggered liver inflammatory response via regulating toll-like receptor 2 (TLR2)/activating transcription factor 4 (ATF4) signaling. Additionally, TLR2 expression was notably increased in macrophages from ischemic fatty livers. In vitro , recombinant S100A9-stimulated macrophages exhibited the elevated production of proinflammatory factors and TLR2/ATF4 pathway activation. Intriguingly, S100A9 facilitated ATF4 nuclear translocation and enhanced NEK7/NLRP3 inflammasome activation in macrophages. In conclusion, our study identified S100A9 as a key regulator responsible for macrophage NLRP3 inflammasome activation and subsequent inflammatory injury in fatty liver IR process. Targeting TLR2/ATF4 signaling may offer a novel therapeutic strategy for mitigating S100A9-mediated liver injury.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。