Strategies for Molecularly Enhanced Chemotherapy to Achieve Synthetic Lethality in Endometrial Tumors with Mutant p53

针对突变型 p53 子宫内膜肿瘤实现合成致死的分子增强化疗策略

阅读:9
作者:Xiangbing Meng, Don S Dizon, Shujie Yang, Xinjun Wang, Danlin Zhu, Kristina W Thiel, Kimberly K Leslie

Abstract

Serous uterine endometrial carcinomas are aggressive type II cancers with poor outcomes for which new treatment strategies are urgently needed, in particular, strategies that augment sensitivity to established chemotherapy regimens. The tumor suppressor gene TP53 is dysregulated in more than 90% of serous tumors, altering master regulators of the G2/M cell cycle checkpoint in unique and predictable ways and desensitizing cells to chemotherapy. We hypothesized that synthetic lethality can be achieved in endometrial cancer cells with mutant p53 by combining paclitaxel with agents to overcome G2/M arrest and induce mitotic catastrophe. The combination of BIBF1120, an investigational VEGFR, PDGFR, and FGFR multityrosine kinase inhibitor with established anti-angiogenic activity, with paclitaxel abrogated the G2/M checkpoint in p53-null endometrial cancer cells via modulation of G2/M checkpoint regulators followed by induction of mitotic cell death. In endometrial cancer cells harboring an oncogenic gain-of-function p53 mutation, synthetic lethality was created by combining paclitaxel with BIBF1120 and a histone deacetylase inhibitor, which serves to destabilize mutant p53. These cells were also sensitive to an inhibitor of the G2/M kinase Wee1 in combination with paclitaxel. These findings reveal that, in addition to antiangiogenic activity, the angiokinase inhibitor BIBF1120 can be used to restore sensitivity to paclitaxel and induce mitotic cell death in endometrial cancer cells with non-functional p53. These preclinical data serve as a critical platform for the creative design of future clinical trials utilizing molecularly enhanced chemotherapy to achieve synthetic lethality based on the mutational landscape.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。