Changes in regulatory phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during normal cell cycle progression and checkpoint arrests

正常细胞周期进展和检查点停滞期间 Cdc25C Ser287 和 Wee1 Ser549 的调节磷酸化变化

阅读:7
作者:Jennifer S Stanford, Joan V Ruderman

Abstract

Entry into mitosis is catalyzed by cdc2 kinase. Previous work identified the cdc2-activating phosphatase cdc25C and the cdc2-inhibitory kinase wee1 as targets of the incomplete replication-induced kinase Chk1. Further work led to the model that checkpoint kinases block mitotic entry by inhibiting cdc25C through phosphorylation on Ser287 and activating wee1 through phosphorylation on Ser549. However, almost all conclusions underlying this idea were drawn from work using recombinant proteins. Here, we report that in the early Xenopus egg cell cycles, phosphorylation of endogenous cdc25C Ser287 is normally high during interphase and shows no obvious increase after checkpoint activation. By contrast, endogenous wee1 Ser549 phosphorylation is low during interphase and increases after activation of either the DNA damage or replication checkpoints; this is accompanied by a slight increase in wee1 kinase activity. Blocking mitotic entry by adding the catalytic subunit of PKA also results in increased wee1 Ser549 phosphorylation and maintenance of cdc25C Ser287 phosphorylation. These results argue that in response to checkpoint activation, endogenous wee1 is indeed a critical responder that functions by repressing the cdc2-cdc25C positive feedback loop. Surprisingly, endogenous wee1 Ser549 phosphorylation is highest during mitosis just after the peak of cdc2 activity. Treatments that block inactivation of cdc2 result in further increases in wee1 Ser549 phosphorylation, suggesting a previously unsuspected role for wee1 in mitosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。