Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma

硫氧还蛋白 1 和端粒酶的双靶向作用促进骨髓增生异常综合征和淋巴瘤的细胞死亡

阅读:7
作者:Qiangan Jing #, Yunyi Wu #, Yanchun Li #, Chaoting Zhou, Junyu Zhang, Jun Xia, Keyi Li, Yuhuan Shen, Hongfeng Yao, Xiangmin Tong, Jing Du, Lushan Yu, Ying Wang

Abstract

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal. Mechanistically, our present study revealed that thiotert treatment effectively inhibited the function of the TRX1/TRXR1 system and telomerase reverse transcriptase (TERT), rendering oxidative damage and impairment of telomeres. Meanwhile, pharmacological administration of glutathione (GSH), N-acetylcysteine (NAC), and mitoquinone (MitoQ), or genetic overexpression of TRX1 or TERT in MDS and cells could dampen the toxicity caused by thiotert. Remarkably, the in vivo mouse model of MDS demonstrated that thiotert administration exhibited greater efficacy in tumor reduction compared to the conventional chemotherapy drug cytarabine. Collectively, these results provide experimental insights into the mechanism of thiotert-induced MDS and lymphoma cell death and unveil that thiotert may be an effective and promising new drug for future MDS and lymphoma treatment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。