Deciphering Key Residues Involved in the Virulence-promoting Interactions between Streptococcus pneumoniae and Human Plasminogen

解读肺炎链球菌与人纤溶酶原之间促进毒力相互作用的关键残基

阅读:6
作者:Christophe Moreau, Rémi Terrasse, Nicole M Thielens, Thierry Vernet, Christine Gaboriaud, Anne Marie Di Guilmi

Abstract

Bacterial pathogens recruit circulating proteins to their own surfaces, co-opting the host protein functions as a mechanism of virulence. Particular attention has focused on the binding of plasminogen (Plg) to bacterial surfaces, as it has been shown that this interaction contributes to bacterial adhesion to host cells, invasion of host tissues, and evasion of the immune system. Several bacterial proteins are known to serve as receptors for Plg including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytoplasmic enzyme that appears on the cell surface in this moonlighting role. Although Plg typically binds to these receptors via several lysine-binding domains, the specific interactions that occur have not been documented in all cases. However, identification of the relevant residues could help define strategies for mitigating the virulence of important human pathogens, such as Streptococcus pneumoniae (Sp). To shed light on this question, we have described a combination of peptide-spot array screening, competition and SPR assays, high-resolution crystallography, and mutational analyses to characterize the interaction between SpGAPDH and Plg. We identified three SpGAPDH lysine residues that were instrumental in defining the kinetic and thermodynamic parameters of the interaction. Altogether, the integration of the data presented in this work allows us to propose a structural model for the molecular interaction of the SpGAPDH-Plg complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。