A convolution-based in vitro-in vivo correlation model for methylphenidate hydrochloride delayed-release and extended-release capsule

基于卷积的盐酸哌甲酯缓释和缓释胶囊体内外相关性模型

阅读:16
作者:Pawan Kumar Gupta, Bev Incledon, Jogarao V S Gobburu, Roberto Gomeni

Abstract

Delayed-release and extended-release methylphenidate hydrochloride (JORNAY PM®) is a novel capsule formulation of methylphenidate hydrochloride, used to treat attention deficit hyperactivity disorder in patients 6 years and older. In this paper, we develop a Level A in vitro-in vivo correlation (IVIVC) model for extended-release methylphenidate hydrochloride to support post-approval manufacturing changes by evaluating a point-to-point correlation between the fraction of drug dissolved in vitro and the fraction of drug absorbed in vivo. Dissolution data from an in vitro study of three different release formulations: fast, medium, and slow, and pharmacokinetic data from two in vivo studies were used to develop an IVIVC model using a convolution-based approach. The time-course of the drug concentration resulting from an arbitrary dose was considered as a function of the in vivo drug absorption and the disposition and elimination processes defined by the unit impulse response function using the convolution integral. An IVIVC was incorporated in the model due to the temporal difference seen in the scatterplots of the estimated fraction of drug absorbed in vivo and the fraction of drug dissolved in vitro and Levy plots. Finally, the IVIVC model was subjected to evaluation of internal predictability. This IVIVC model can be used to predict in vivo profiles for different in vitro profiles of extended-release methylphenidate hydrochloride.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。