Conclusion
Overall, our findings suggested that Res ameliorated DSS-induced IECs barrier dysfunction by activating Nrf2/HO-1 pathway, showcasing significant therapeutic potential in the early stages of colitis.
Methods
Dextran sulfate sodium (DSS) was employed to induce barrier dysfunction in IECs. Inflammatory cytokines in supernatants (interleukin [IL]-6, IL-1β, tumor necrotic factor [TNF]-α, and IL-10) were quantified via enzyme-linked immunosorbent assay (ELISA). Then we assessed monolayer integrity using transepithelial electrical resistance (TEER). TJ protein expression (zonula occludens [ZO]-1 and Occludin) in IECs was evaluated through immunofluorescence and Western blot analysis. Network pharmacology helped identify the biological processes, signaling pathways, and key targets involved in Res's mitigation of DSS-induced IECs barrier dysfunction. The efficacy of the primary target was further corroborated using Western blot.
Results
Res was shown to increase cell viability and IL-10 expression while reducing TNF-α, IL-6, and IL-1β levels, thus mitigating the inflammatory response. It enhanced TEER values and upregulated TJ protein expression (ZO-1 and Occludin). Network pharmacology revealed that Res potentially targets the NFE2L2 (nuclear factor erythroid-2-related factor 2, Nrf2), a vital antioxidant factor. Significantly, Res augmented Nrf2 and heme oxygenase 1 (HO-1) protein levels, counteracting oxidative stress in the IECs barrier dysfunction model.
