HIV-2 and SIVmac accessory virulence factor Vpx down-regulates SAMHD1 enzyme catalysis prior to proteasome-dependent degradation

HIV-2 和 SIVmac 辅助毒力因子 Vpx 在蛋白酶体依赖性降解之前下调 SAMHD1 酶催化作用

阅读:5
作者:Maria DeLucia, Jennifer Mehrens, Ying Wu, Jinwoo Ahn

Abstract

SAMHD1, a dGTP-regulated deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase, down-regulates dNTP pools in terminally differentiated and quiescent cells, thereby inhibiting HIV-1 infection at the reverse transcription step. HIV-2 and simian immunodeficiency virus (SIV) counteract this restriction via a virion-associated virulence accessory factor, Vpx (Vpr in some SIVs), which loads SAMHD1 onto CRL4-DCAF1 E3 ubiquitin ligase for polyubiquitination, programming it for proteasome-dependent degradation. However, the detailed molecular mechanisms of SAMHD1 recruitment to the E3 ligase have not been defined. Further, whether divergent, orthologous Vpx proteins, encoded by distinct HIV/SIV strains, bind SAMHD1 in a similar manner, at a molecular level, is not known. We applied surface plasmon resonance analysis to assess the requirements for and kinetics of binding between various primate SAMHD1 proteins and Vpx proteins from SIV or HIV-2 strains. Our data indicate that Vpx proteins, bound to DCAF1, interface with the C terminus of primate SAMHD1 proteins with nanomolar affinity, manifested by rapid association and slow dissociation. Further, we provide evidence that Vpx binding to SAMHD1 inhibits its catalytic activity and induces disassembly of a dGTP-dependent oligomer. Our studies reveal a previously unrecognized biochemical mechanism of Vpx-mediated SAMHD1 inhibition: direct down-modulation of its catalytic activity, mediated by the same binding event that leads to SAMHD1 recruitment to the E3 ubiquitin ligase for proteasome-dependent degradation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。