Reducing branched-chain amino acids improves cardiac stress response in mice by decreasing histone H3K23 propionylation

减少支链氨基酸可通过降低组蛋白 H3K23 丙酰化来改善小鼠的心脏应激反应

阅读:4
作者:Zhi Yang, Minzhen He, Julianne Austin, Danish Sayed, Maha Abdellatif

Abstract

Identification of branched-chain amino acid (BCAA) oxidation enzymes in the nucleus led us to predict that they are a source of the propionyl-CoA that is utilized for histone propionylation and, thereby, regulate gene expression. To investigate the effects of BCAAs on the development of cardiac hypertrophy and failure, we applied pressure overload on the heart in mice maintained on a diet with standard levels of BCAAs (BCAA control) versus a BCAA-free diet. The former was associated with an increase in histone H3K23-propionyl (H3K23Pr) at the promoters of upregulated genes (e.g., cell signaling and extracellular matrix genes) and a decrease at the promoters of downregulated genes (e.g., electron transfer complex [ETC I-V] and metabolic genes). Intriguingly, the BCAA-free diet tempered the increases in promoter H3K23Pr, thus reducing collagen gene expression and fibrosis during cardiac hypertrophy. Conversely, the BCAA-free diet inhibited the reductions in promoter H3K23Pr and abolished the downregulation of ETC I-V subunits, enhanced mitochondrial respiration, and curbed the progression of cardiac hypertrophy. Thus, lowering the intake of BCAAs reduced pressure overload-induced changes in histone propionylation-dependent gene expression in the heart, which retarded the development of cardiomyopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。