Elevated corticosterone associated with food deprivation upregulates expression in rat skeletal muscle of the mTORC1 repressor, REDD1

与食物剥夺相关的皮质酮升高会上调大鼠骨骼肌中 mTORC1 抑制剂 REDD1 的表达

阅读:5
作者:Nora K McGhee, Leonard S Jefferson, Scot R Kimball

Abstract

Food deprivation induces a repression of protein synthesis in skeletal muscle in part due to reduced signaling through the mammalian target of rapamycin complex 1 (mTORC1). Previous studies have identified upregulated expression of the protein Regulated in DNA Damage and Development (REDD1) as an important mechanism in the regulation of mTORC1 activity in response to a variety of stresses. Our goal in this investigation was to determine whether modulation of REDD1 expression occurs in response to food deprivation and refeeding, and, if it does, to ascertain if changes in REDD1 expression correlate with altered mTORC1 signaling. As expected, mTORC1 signaling was repressed after 18 h of food deprivation compared with freely-fed control rats and quickly recovered after refeeding for 45 min. Food deprivation caused a dramatic rise in REDD1 mRNA and protein expression; refeeding resulted in a reduction to baseline. Food deprivation is characterized by low-serum insulin and elevated glucocorticoid concentrations. Therefore, initially, alloxan-induced type I diabetes was used to minimize the food deprivation- and refeeding-induced changes in insulin. Although diabetic rats exhibited upregulated REDD1 expression compared with nondiabetic controls, there was no direct correlation between REDD1 mRNA expression and serum insulin levels, and insulin treatment of diabetic rats did not affect REDD1 expression. In contrast, serum corticosterone levels correlated directly with REDD1 mRNA expression (r = 0.68; P = 0.01). Moreover, inhibiting corticosterone-mediated signaling via administration of the glucocorticoid receptor antagonist RU486 blocked both the food deprivation- and diabetes-induced increase in REDD1 mRNA expression. Overall, the results demonstrate that changes in REDD1 expression likely contribute to the regulation of mTORC1 signaling during food deprivation and refeeding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。