Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells

原子力显微镜 (AFM) 和牵引力显微镜 (TFM) 相结合,揭示了粘弹性材料特性与活细胞收缩预应力之间的相关性

阅读:5
作者:Nicolas Schierbaum, Johannes Rheinlaender, Tilman E Schäffer

Abstract

Living cells exhibit a complex mechanical behavior, whose underlying mechanisms are still largely unknown. Emerging from the molecular structure and dynamics of the cytoskeleton, the mechanical behavior comprises "passive" viscoelastic material properties and "active" contractile prestress. To directly investigate the connection between these quantities at the single-cell level, we here present the combination of atomic force microscopy (AFM) with traction force microscopy (TFM). With this combination, we simultaneously measure viscoelastic material parameters (stiffness, fluidity) and contractile prestress of adherent fibroblast and epithelial cells. Although stiffness, fluidity, and contractile prestress greatly vary within a cell population, they are highly correlated: stiffer cells have a lower fluidity and a larger prestress than softer cells. We show that viscoelastic material properties and contractile prestress are both governed by the activity of the actomyosin machinery. Our results underline the connection between a cell's viscoelastic material properties and its contractile prestress and their importance in cell mechanics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。