Pancreatic expression of CPT1A is essential for whole body glucose homeostasis by supporting glucose-stimulated insulin secretion

CPT1A 的胰腺表达通过支持葡萄糖刺激的胰岛素分泌对全身葡萄糖稳态至关重要

阅读:5
作者:Maggie P Ducote, Caroline R Cothern, Heidi M Batdorf, Molly S Fontenot, Thomas M Martin, Maria Iftesum, Manas R Gartia, Robert C Noland, David H Burk, Sujoy Ghosh, Susan J Burke

Abstract

Pancreatic islet β-cells express the Cpt1a gene, which encodes the enzyme carnitine palmitoyltransferase 1A (CPT1A), an enzyme that facilitates entry of long-chain fatty acids into the mitochondria. Because fatty acids are required for glucose-stimulated insulin secretion, we tested the hypothesis that CPT1A is essential to support islet β-cell function and mass. In this study, we describe genetic deletion of Cpt1a in pancreatic tissue (Cpt1aPdx1-/-) using C57BL/6J mice. Islet morphology, β-cell transcription factor abundance, islet ATP levels, glucose transporter 2 abundance, and expression of the dedifferentiation marker ALDH1A3 were analyzed by immunofluorescent staining. Glucose and insulin tolerance were assessed to investigate the metabolic status of genetic reductions in Cpt1a. Glucose-stimulated insulin secretion was evaluated in vivo and in isolated islets ex vivo by perifusion. Pancreatic deletion of Cpt1a reduced glucose tolerance but did not alter insulin sensitivity. Glucose-stimulated insulin secretion was reduced both in vivo and in islets isolated from Cpt1aPdx1-/- mice relative to control islets. Pancreatic islets from Cpt1aPdx1-/- mice displayed elevations in ALDH1A3, a marker of dedifferentiation, but no reduction in nuclear abundance of the β-cell transcription factors MafA and Nkx6.1 or the GLUT2 glucose transporter. However, intracellular ATP abundance was markedly decreased in islets isolated from Cpt1aPdx1-/- relative to littermate control mice. We conclude that there is an important physiological role for pancreatic CPT1A to maintain whole body glucose homeostasis by supporting glucose-stimulated insulin secretion and maintaining intracellular ATP levels in male mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。