Neohesperidin Dihydrochalcone Alleviates Lipopolysaccharide-Induced Vascular Endothelium Dysfunction by Regulating Antioxidant Capacity

新橙皮苷二氢查尔酮通过调节抗氧化能力缓解脂多糖诱导的血管内皮功能障碍

阅读:5
作者:Yuxin Nong, Junquan Lu, Danqing Yu, Xuebiao Wei

Background

Endothelial dysfunction is one of the important mechanisms of organ and tissue damage in sepsis. In this study, we evaluated the effects of neohesperidin dihydrochalone (NHDC) on lipopolysaccharide (LPS)-induced vascular dysfunction and explored the potential mechanisms.

Conclusions

Our study indicate that pretreatment with NHDC may provide protection against LPS-induced vascular dysfunction by reducing oxidative stress and activation of inflammatory signaling pathways.

Methods

In vivo, we assessed vascular leakage in mice by injecting Evans blue dye. In vitro, cell counting kit-8 (CCK-8) assay and flow cytometry were used to assess the activity of HUVEC and apoptosis. The effect of LPS on HUVEC barrier was assessed using FITC-extend membrane assay. The adhesion ability of HUVEC was tested by THP-1 cell adhesion assay. The antioxidant capacity of cells was measured by detecting the level of mitochondrial membrane potential, ROS, and content of CAT, SOD, GSH, and MDA within the cells. Furthermore, the release of endothelial IL-1β, IL-6, and TNF-α were detected by ELISA, and the expression level of TAK1, ERK1/2, and NFκB were detected by western blot.

Results

Treatment with NHDC effectively alleviated LPS-induced endothelial permeability and organ damage by reducing reactive oxygen species production and enhancing the antioxidant response. Further investigation suggested that NHDC may exert its protective effects by inhibiting the release of IL-1β, IL-6, and TNF-α, and by decreasing the phosphorylation of key inflammatory signaling molecules, including transforming growth factor-β-activated kinase 1 (TAK1), extracellular signal-regulated kinases 1/2 (ERK1/2), and nuclear factor kappa B (NFκB). Conclusions: Our study indicate that pretreatment with NHDC may provide protection against LPS-induced vascular dysfunction by reducing oxidative stress and activation of inflammatory signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。