Antisolvent 3D Printing of Gene-Activated Scaffolds for Bone Regeneration

用于骨再生的基因激活支架的抗溶剂 3D 打印

阅读:7
作者:Andrey Vyacheslavovich Vasilyev, Irina Alekseevna Nedorubova, Viktoria Olegovna Chernomyrdina, Anastasiia Yurevna Meglei, Viktoriia Pavlovna Basina, Anton Vladimirovich Mironov, Valeriya Sergeevna Kuznetsova, Victoria Alexandrovna Sinelnikova, Olga Anatolievna Mironova, Ekaterina Maksimovna Trifanov

Abstract

The use of 3D-printed gene-activated bone grafts represents a highly promising approach in the fields of dentistry and orthopedics. Bioresorbable poly-lactic-co-glycolic acid (PLGA) scaffolds, infused with adenoviral constructs that carry osteoinductive factor genes, may provide an effective alternative to existing bone grafts for the reconstruction of extensive bone defects. This study aims to develop and investigate the properties of 3D scaffolds composed of PLGA and adenoviral constructs carrying the BMP2 gene (Ad-BMP2), both in vitro and in vivo. The elastic modulus of the disk-shaped PLGA scaffolds created using a specialized 3D printer was determined by compressive testing in both axial and radial directions. In vitro cytocompatibility was assessed using adipose-derived stem cells (ADSCs). The ability of Ad-BMP2 to transduce cells was evaluated. The osteoinductive and biocompatible properties of the scaffolds were also assessed in vivo. The Young's modulus of the 3D-printed PLGA scaffolds exhibited comparable values in both axial and radial compression directions, measuring 3.4 ± 0.7 MPa for axial and 3.17 ± 1.4 MPa for radial compression. The scaffolds promoted cell adhesion and had no cytotoxic effect on ADSCs. Ad-BMP2 successfully transduced the cells and induced osteogenic differentiation in vitro. In vivo studies demonstrated that the 3D-printed PLGA scaffolds had osteoinductive properties, promoting bone formation within the scaffold filaments as well as at the center of a critical calvarial bone defect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。