2-DG Regulates Immune Imbalance on the Titanium Surface after Debridement

2-DG 调节清创后钛表面的免疫失衡

阅读:6
作者:Xingchen Liu, Shudan Deng, Jiaxin Xie, Chunxin Xu, Zhuwei Huang, Baoxin Huang, Zhuofan Chen, Shoucheng Chen

Abstract

Peri-implantitis requires clinical treatments comprised of mechanical and chemical debridement to remove bacterial biofilms. Bone regeneration on the titanium surface after debridement has been a topical issue of peri-implantitis treatments. Increasing evidence has revealed that the immune microenvironment plays a key role in regulating the bone regeneration process. However, it remains unclear what kind of immune microenvironment the titanium surface induces after debridement. In the study, model titanium surface after debridement was prepared via biofilm induction and mechanical and chemical debridement in vitro. Then, the macrophages and naïve CD4+ T lymphocytes were cultured on the titanium surface after debridement for immune microenvironment evaluation, with the original titanium surface as the control. Next, to regulate the immune microenvironment, 2-DG, a glycolysis inhibitor, was further incorporated to regulate macrophages and CD4+ T lymphocytes at the same time. Surface characterization results showed that the bacterial biofilms were completely removed, while the micro-morphology of titanium surface altered after debridement, and the element composition did not change. Compared with the original titanium disc, titanium surface after debridement can lead to the inflammatory differentiation of macrophages and CD4+ T lymphocytes. The percentage of M1 and Th17 inflammatory cells and the expression of their inflammatory factor genes are upregulated. However, 0.3 mmol of 2-DG can significantly reduce the inflammatory differentiation of both macrophages and CD4+ T lymphocytes and inhibit their expression of inflammatory genes. In conclusion, although bacterial biofilms were removed from titanium surface after debridement, the surface topography changes could still induce immune imbalance and form an inflammatory immune microenvironment. However, this inflammatory immune microenvironment can be effectively reversed by 2-DG in vitro, thus creating an immune microenvironment conducive to osteogenesis, which might provide a new perspective for future therapy of peri-implantitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。