FABP4 contributes to renal interstitial fibrosis via mediating inflammation and lipid metabolism

FABP4 通过介导炎症和脂质代谢导致肾间质纤维化

阅读:5
作者:Yujie Qiao #, Liping Liu #, Lianhong Yin, Lina Xu, Zeyao Tang, Yan Qi, Zhang Mao, Yanyan Zhao, Xiaodong Ma, Jinyong Peng

Abstract

Fatty acid binding protein 4 (FABP4), a subtype of fatty acid-binding protein family, shows critical roles in metabolism and inflammation. However, its roles on regulating renal interstitial fibrosis (RIF) remain unclear. In this work, LPS-stimulated in vitro models on NRK-52E and NRK-49F cells, and in vivo UUO models in rats and mice were established. The results showed that comparing with control groups or sham groups, the expression levels of α-SMA, COL1A, COL3A, IL-1β, IL-6, and TNF-α in LPS-stimulated cells or UUO animals were significantly increased. Meanwhile, the levels of TC, TG, and free fatty acid were also significantly increased as well as the obvious lipid droplets, and the serum levels of BUN, Cr were significantly increased with large amounts of collagen deposition in renal tissues. Further investigation showed that compared with control groups or sham groups, the expression levels of FABP4 in LPS-stimulated cells and UUO animals were significantly increased, resulting in down- regulating the expression levels of PPARγ, upregulating the levels of p65 and ICAM-1, and decreasing the expression levels of ACADM, ACADL, SCP-2, CPT1, EHHADH, and ACOX1. To deeply explore the mechanism of FABP4 in RIF, FABP4 siRNA and inhibitor interfered cell models, and UUO model on FABP4 knockout (KO) mice were used. The results showed that the expression levels of α-SMA, COL1A, and COL3A were significantly decreased, the deposition of lipid droplets decreased, and the contents of TC, TG, and free fatty acids were significantly decreased after gene silencing. Meanwhile, the expression levels of PPAR-γ, ACADM, ACADL, SCP-2, CPT1, EHHADH, and ACOX1 were upregulated, the levels of p65 and ICAM-1 were downregulated, and the mRNA levels of IL-1β, IL-6, and TNF-α were decreased. Our results supported that FABP4 contributed to RIF via promoting inflammation and lipid metabolism, which should be considered as one new drug target to treat RIF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。