Evolutionary and cellular analysis of the 'dark' pseudokinase PSKH2

“暗”假激酶 PSKH2 的进化和细胞分析

阅读:5
作者:Dominic P Byrne #, Safal Shrestha #, Leonard A Daly, Vanessa Marensi, Krithika Ramakrishnan, Claire E Eyers, Natarajan Kannan, Patrick A Eyers

Abstract

Pseudokinases, so named because they lack one or more conserved canonical amino acids that define their catalytically active relatives, have evolved a variety of biological functions in both prokaryotic and eukaryotic organisms. Human PSKH2 is closely related to the canonical kinase PSKH1, which maps to the CAMK family of protein kinases. Primates encode PSKH2 in the form of a pseudokinase, which is predicted to be catalytically inactive due to loss of the invariant catalytic Asp residue. Although the biological role(s) of vertebrate PSKH2 proteins remains unclear, we previously identified species-level adaptions in PSKH2 that have led to the appearance of kinase or pseudokinase variants in vertebrate genomes alongside a canonical PSKH1 paralog. In this paper we confirm that, as predicted, PSKH2 lacks detectable protein phosphotransferase activity, and exploit structural informatics, biochemistry and cellular proteomics to begin to characterise vertebrate PSKH2 orthologues. AlphaFold 2-based structural analysis predicts functional roles for both the PSKH2 N- and C-regions that flank the pseudokinase domain core, and cellular truncation analysis confirms that the N-terminal domain, which contains a conserved myristoylation site, is required for both stable human PSKH2 expression and localisation to a membrane-rich subcellular fraction containing mitochondrial proteins. Using mass spectrometry-based proteomics, we confirm that human PSKH2 is part of a cellular mitochondrial protein network, and that its expression is regulated through client-status within the HSP90/Cdc37 molecular chaperone system. HSP90 interactions are mediated through binding to the PSKH2 C-terminal tail, leading us to predict that this region might act as both a cis and trans regulatory element, driving outputs linked to the PSKH2 pseudokinase domain that are important for functional signalling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。