Tensile Properties and Fracture Behaviour of Biodegradable Iron⁻Manganese Scaffolds Produced by Powder Sintering

粉末烧结制备可生物降解铁锰支架的拉伸性能和断裂行为

阅读:6
作者:A Dehghan-Manshadi, D H StJohn, M S Dargusch

Abstract

Powder sintering at 1200 °C for 180 min was used to produce Fe-Mn based alloys with tensile properties and an elastic modulus suitable for biodegradable implant applications. The effect of the addition of manganese on the microstructure, tensile properties and fracture behaviour of the Fe-Mn alloys was investigated. The Fe-35Mn alloy with a microstructure dominated by the Austenite phase showed the best set of tensile properties, including ultimate tensile strength and Young's modulus, suitable for orthopaedic implant applications. The fracture surface of the Fe-35Mn alloy showed signs of complex multimode fracture behaviour, consisting of interconnected pores and large segments with signs of ductile fracture, including the presence of dimples as well as micro-voids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。