Modulation of amyloid precursor protein expression reduces β-amyloid deposition in a mouse model

调节淀粉样蛋白前体的表达可减少小鼠模型中的 β-淀粉样蛋白沉积

阅读:9
作者:Ayodeji A Asuni, Maitea Guridi, Joanna E Pankiewicz, Sandrine Sanchez, Martin J Sadowski

Methods

Using Chinese hamster ovary (CHO) APP751SW cells, we identified and characterized effects of 2-([pyridine-2-ylmethyl]-amino)-phenol (2-PMAP) on APP steady-state level and Aβ production. Outcomes of 2-PMAP treatment on Aβ accumulation and associated memory deficit were studied in APPSW /PS1dE9 AD transgenic model mice.

Objective

Proteolytic cleavage of the amyloid precursor protein (APP) generates β-amyloid (Aβ) peptides. Prolonged accumulation of Aβ in the brain underlies the pathogenesis of Alzheimer disease (AD) and is regarded as a principal target for development of disease-modifying therapeutics.

Results

In CHO APP751SW cells, 2-PMAP lowered the steady-state APP level and inhibited Aβx-40 and Aβx-42 production in a dose-response manner with a minimum effective concentration ≤ 0.5μM. The inhibitory effect of 2-PMAP on translational efficiency of APP mRNA into protein was directly confirmed using a 35S-methionine/cysteine metabolic labeling technique, whereas APP mRNA level remained unaltered. Administration of 2-PMAP to APPSW /PS1dE9 mice reduced brain levels of full-length APP and its C-terminal fragments and lowered levels of soluble Aβx-40 and Aβx-42 . Four-month chronic treatment of APPSW /PS1dE9 mice revealed no observable toxicity and improved animals' memory performance. 2-PMAP treatment also caused significant reduction in brain Aβ deposition determined by both unbiased quantification of Aβ plaque load and biochemical analysis of formic acid-extracted Aβx-40 and Aβx-42 levels and the level of oligomeric Aβ. Interpretation: We demonstrate the potential of modulating APP steady-state expression level as a safe and effective approach for reducing Aβ deposition in AD transgenic model mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。