Hypoxia-induced ATF3 escalates breast cancer invasion by increasing collagen deposition via P4HA1

缺氧诱导的 ATF3 通过 P4HA1 增加胶原沉积,从而增强乳腺癌侵袭

阅读:6
作者:Shruti Ganesh Dhamdhere, Anamika Bansal, Pranjal Singh, Parik Kakani, Shruti Agrawal, Atul Samaiya, Sanjeev Shukla

Abstract

Activating transcription factors (ATFs), members of the adaptive-response gene family, participate in cellular processes to aid adaptations in response to extra and/or intracellular changes. In this study, we observed that one of the ATFs, Activating transcription factor 3 (ATF3), is upregulated under hypoxia via alterations in the epigenetic landscape of its promoter, followed by transcriptional upregulation. Under hypoxic conditions, Hypoxia-inducible factor 1-alpha (HIF1ɑ) alleviates methylation at the ATF3 promoter by recruiting TET1 and induces ATF3 transcription. In addition, our RNA-seq analysis showed that ATF3 globally affects transcription under hypoxia and controls the processes of EMT and cancer invasion by stimulating the transcription of Prolyl 4-Hydroxylase Subunit Alpha 1 (P4HA1), an enzyme which enhances invasion-conducive extracellular matrix (ECM) under hypoxic conditions. Prolyl hydroxylases play a critical role in the hydroxylation and deposition of collagen in the extracellular matrix (ECM) during the evolution of cancer, which is necessary for metastasis. Importantly, P4HA1 undergoes alternative splicing under hypoxia, where the inclusion of exon 9a is increased. Interestingly, involvement of ATF3 in P4HA1 splicing was also evident, as binding of ATF3 at intron 9a led to demethylation of this DNA region via recruitment of TET1. Furthermore, we also show that the demethylated DNA region of intron 9a then becomes accessible to CCCTC-binding factor (CTCF). Thus, a cascade of demethylation via ATF3 recruited TET1, followed by increased RNA Pol II pause at intron 9a via CTCF, leads to inclusion of exon 9a. The P4HA1 9a isoform leads to enhanced invasion under hypoxic conditions by increasing deposition of collagen in the ECM. These results reveal a novel hypoxia-induced HIF1ɑ-ATF3-P4HA1 axis which can potentially be exploited as a therapeutic target to impede EMT and ultimately breast cancer invasion. Hypoxia induced ATF3 regulates P4HA1 expression and alternative splicing to promote breast cancer invasion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。