High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone

高性能、稳定的负载纳米合金用于乙酰丙酸催化加氢制备γ-戊内酯

阅读:5
作者:Wenhao Luo, Meenakshisundaram Sankar, Andrew M Beale, Qian He, Christopher J Kiely, Pieter C A Bruijnincx, Bert M Weckhuysen

Abstract

The catalytic hydrogenation of levulinic acid, a key platform molecule in many biorefinery schemes, into γ-valerolactone is considered as one of the pivotal reactions to convert lignocellulose-based biomass into renewable fuels and chemicals. Here we report on the development of highly active, selective and stable supported metal catalysts for this reaction and on the beneficial effects of metal nano-alloying. Bimetallic random alloys of gold-palladium and ruthenium-palladium supported on titanium dioxide are prepared with a modified metal impregnation method. Gold-palladium/titanium dioxide shows a marked,~27-fold increase in activity (that is, turnover frequency of 0.1 s(-1)) compared with its monometallic counterparts. Although ruthenium-palladium/titanium dioxide is not only exceptionally active (that is, turnover frequency of 0.6 s(-1)), it shows excellent, sustained selectivity to γ-valerolactone (99%). The dilution and isolation of ruthenium by palladium is thought to be responsible for this superior catalytic performance. Alloying, furthermore, greatly improves the stability of both supported nano-alloy catalysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。