Mitochondrial Populations Exhibit Differential Dynamic Responses to Increased Energy Demand during Exocytosis In Vivo

体内胞吐过程中线粒体群体对能量需求增加表现出不同的动态反应

阅读:5
作者:Natalie Porat-Shliom, Olivia J Harding, Lenka Malec, Kedar Narayan, Roberto Weigert

Abstract

Mitochondria are dynamic organelles undergoing fission, fusion, and translocation. These processes have been studied in cultured cells; however, little is known about their regulation in cells within tissues in vivo. We applied four-dimensional intravital microscopy to address this in secretory cells of the salivary gland. We found that mitochondria are organized in two populations: one juxtaposed to the basolateral plasma membrane and the other dispersed in the cytosol. Under basal conditions, central mitochondria exhibit microtubule-dependent motility and low fusion rate, whereas basolateral mitochondria are static and display high fusion rate. Increasing cellular energy demand by β-adrenergic stimulation of regulated exocytosis selectively enhanced motility and fusion of central mitochondria. Inhibition of microtubule polymerization led to inhibition of central mitochondrial motility and fusion and a marked reduction in exocytosis. This study reveals a conserved heterogeneity in mitochondrial positioning and dynamics in exocrine tissues that may have fundamental implications in organ pathophysiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。