Ligand-specific endocytic dwell times control functional selectivity of the cannabinoid receptor 1

配体特异性的内吞停留时间控制大麻素受体 1 的功能选择性

阅读:5
作者:Jacqueline Flores-Otero, Kwang H Ahn, Francheska Delgado-Peraza, Ken Mackie, Debra A Kendall, Guillermo A Yudowski

Abstract

G protein-coupled receptors (GPCRs) are the major transducers of external stimuli and key therapeutic targets in many pathological conditions. When activated by different ligands, one receptor can elicit multiple signalling cascades that are mediated by G proteins or β-arrestin, a process defined as functional selectivity or ligand bias. However, the dynamic mechanisms underlying β-arrestin signalling remain unknown. Here by studying the cannabinoid receptor 1 (CB1R), we identify ligand-specific endocytic dwell times, that is, the time during which receptors are clustered into clathrin pits together with β-arrestins before endocytosis, as the mechanism controlling β-arrestin signalling. Agonists inducing short endocytic dwell times produce little or no β-arrestin signalling, whereas those eliciting prolonged dwell times induce robust signalling. Remarkably, extending CB1R dwell times by preventing endocytosis substantially increased β-arrestin signalling. These studies reveal how receptor activation translates into β-arrestin signalling and identify a mechanism to control this pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。