Systematic representation and optimization enable the inverse design of cross-species regulatory sequences in bacteria

系统表征和优化使得细菌跨物种调控序列的逆向设计成为可能

阅读:5
作者:Pengcheng Zhang #, Qixiu Du #, Ye Wang #, Lei Wei, Xiaowo Wang

Abstract

Regulatory sequences encode crucial gene expression signals, yet the sequence characteristics that determine their functionality across species remain obscure. Deep generative models have demonstrated considerable potential in various inverse design applications, especially in engineering genetic elements. Here, we introduce DeepCROSS, a generative artificial intelligence framework for the inverse design of cross-species and species-preferred 5' regulatory sequences in bacteria. DeepCROSS constructs a meta-representation using 1.8 million regulatory sequences from thousands of bacterial genomes to depict the general constraints of regulatory sequences, employs artificial intelligence-guided massively parallel reporter assay experiments in E. coli and P. aeruginosa to explore the potential sequence space, and performs multi-task optimization to obtain de novo regulatory sequences. The optimized regulatory sequences achieve similar or better performance to functional natural regulatory sequences, with high success rates and low sequence similarities with the natural genome. Collectively, DeepCROSS efficiently navigates the sequence-function landscape and enables the inverse design of cross-species and species-preferred 5' regulatory sequences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。