HMG-CoA synthase isoenzymes 1 and 2 localize to satellite glial cells in dorsal root ganglia and are differentially regulated by peripheral nerve injury

HMG-CoA 合酶同工酶 1 和 2 定位于背根神经节的卫星神经胶质细胞,并受周围神经损伤的不同调节

阅读:5
作者:Fei Wang, Hongfei Xiang, Gregory Fischer, Zhen Liu, Matthew J Dupont, Quinn H Hogan, Hongwei Yu

Abstract

In dorsal root ganglia (DRG), satellite glial cells (SGCs) tightly ensheathe the somata of primary sensory neurons to form functional sensory units. SGCs are identified by their flattened and irregular morphology and expression of a variety of specific marker proteins. In this report, we present evidence that the 3-hydroxy-3-methylglutaryl coenzyme A synthase isoenzymes 1 and 2 (HMGCS1 and HMGCS2) are abundantly expressed in SGCs. Immunolabeling with the validated antibodies revealed that both HMGCS1 and HMGCS2 are highly colabeled with a selection of SGC markers, including GS, GFAP, Kir4.1, GLAST1, GDNF, and S100 but not with microglial cell marker Iba1, myelin sheath marker MBP, and neuronal marker β3-tubulin or phosphorylated CaMKII. HMGCS1 but not HMGCS2 immunoreactivity in SGCs is reduced in the fifth lumbar (L5) DRGs that contain axotomized neurons following L5 spinal nerve ligation (SNL) in rats. Western blot showed that HMGCS1 protein level in axotomized L5 DRGs is reduced after SNL to 66±8% at 3 days (p<0.01, n=4 animals in each group) and 58±13% at 28 days (p<0.001, n=9 animals in each group) of its level in control samples, whereas HMGCS2 protein was comparable between injured and control DRGs. These results identify HMGCSs as the alternative markers for SGCs in DRGs. Downregulated HMGCS1 expression in DRGs after spinal nerve injury may reflect a potential role of abnormal sterol metabolism of SGCs in the nerve injured-induced neuropathic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。