Polyvinyl chloride-based dielectric elastomer with high permittivity and low viscoelasticity for actuation and sensing

用于驱动和传感的高介电常数和低粘弹性的聚氯乙烯基介电弹性体

阅读:7
作者:Jianjian Huang, Xiaodie Zhang, Ruixue Liu, Yonghui Ding, Dongjie Guo

Abstract

Dielectric elastomers (DEs) are widely used in soft actuation and sensing. Current DE actuators require high driving electrical fields because of their low permittivity. Most of DE actuators and sensors suffer from high viscoelastic effects, leading to high mechanical loss and large shifts of signals. This study demonstrates a valuable strategy to produce polyvinyl chloride (PVC)-based elastomers with high permittivity and low viscoelasticity. The introduction of cyanoethyl cellulose (CEC) into plasticized PVC gel (PVCg) not only confers a high dielectric permittivity (18.9@1 kHz) but also significantly mitigates their viscoelastic effects with a low mechanical loss (0.04@1 Hz). The CEC/PVCg actuators demonstrate higher actuation performances over the existing DE actuators under low electrical fields and show marginal displacement shifts (7.78%) compared to VHB 4910 (136.09%). The CEC/PVCg sensors display high sensitivity, fast response, and limited signal drifts, enabling their faithful monitoring of multiple human motions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。