Discovery of Mycobacterium tuberculosis α-1,4-glucan branching enzyme (GlgB) inhibitors by structure- and ligand-based virtual screening

通过基于结构和配体的虚拟筛选发现结核分枝杆菌 α-1,4-葡聚糖分支酶 (GlgB) 抑制剂

阅读:7
作者:Hedwin Kitdorlang Dkhar, Anupriya Gopalsamy, Saurabh Loharch, Amandeep Kaur, Isha Bhutani, Kanmani Saminathan, Ella Bhagyaraj, Vemika Chandra, Kunchithapadam Swaminathan, Pushpa Agrawal, Raman Parkesh, Pawan Gupta

Abstract

GlgB (α-1,4-glucan branching enzyme) is the key enzyme involved in the biosynthesis of α-glucan, which plays a significant role in the virulence and pathogenesis of Mycobacterium tuberculosis. Because α-glucans are implicated in the survival of both replicating and non-replicating bacteria, there exists an exigent need for the identification and development of novel inhibitors for targeting enzymes, such as GlgB, involved in this pathway. We have used the existing structural information of M. tuberculosis GlgB for high throughput virtual screening and molecular docking. A diverse database of 330,000 molecules was used for identifying novel and efficacious therapeutic agents for targeting GlgB. We also used three-dimensional shape as well as two-dimensional similarity matrix methods to identify diverse molecular scaffolds that inhibit M. tuberculosis GlgB activity. Virtual hits were generated after structure and ligand-based screening followed by filters based on interaction with human GlgB and in silico pharmacokinetic parameters. These hits were experimentally evaluated and resulted in the discovery of a number of structurally diverse chemical scaffolds that target M. tuberculosis GlgB. Although a number of inhibitors demonstrated in vitro enzyme inhibition, two compounds in particular showed excellent inhibition of in vivo M. tuberculosis survival and its ability to get phagocytosed. This work shows that in silico docking and three-dimensional chemical similarity could be an important therapeutic approach for developing inhibitors to specifically target the M. tuberculosis GlgB enzyme.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。