Regulatory twist and synergistic role of metabolic coinducer- and response regulator-mediated CbbR-cbbI interactions in Rhodopseudomonas palustris CGA010

代谢共诱导物和反应调节剂介导的 CbbR-cbbI 相互作用在沼泽红假单胞菌 CGA010 中的调控转折和协同作用

阅读:6
作者:Gauri S Joshi, Michael Zianni, Cedric E Bobst, F Robert Tabita

Abstract

Rhodopseudomonas palustris assimilates CO2 by the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway. Most genes required for a functional CBB pathway are clustered into the cbbI and cbbII operons, with the cbbI operon subject to control by a LysR transcriptional activator, CbbR, encoded by cbbR, which is divergently transcribed from the cbbLS genes (encoding form I RubisCO) of the cbbI operon. Juxtaposed between the genes encoding CbbR and CbbLS are genes that encode a three-protein two-component system (CbbRRS system) that functions to modify the ability of CbbR to regulate cbbLS expression. Previous studies indicated that the response regulators, as well as various coinducers (effectors), specifically influence CbbR-promoter interactions. In the current study, it was shown via several experimental approaches that the response regulators and coinducers act synergistically on CbbR to influence cbbLS transcription. Synergistic effects on the formation of specific CbbR-DNA complexes were quantified using surface plasmon resonance (SPR) procedures. Gel mobility shift and DNA footprint analyses further indicated structural changes in the DNA arising from the presence of response regulators and coinducer molecules binding to CbbR. Based on previous studies, and especially emphasized by the current investigation, it is clear that protein complexes influence promoter activity and the cbbLS transcription machinery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。