Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents

优化CaO结构特征及其有效稳定性制备高容量CO2吸附剂

阅读:9
作者:Muhammad Awais Naeem, Andac Armutlulu, Qasim Imtiaz, Felix Donat, Robin Schäublin, Agnieszka Kierzkowska, Christoph R Müller

Abstract

Calcium looping, a CO2 capture technique, may offer a mid-term if not near-term solution to mitigate climate change, triggered by the yet increasing anthropogenic CO2 emissions. A key requirement for the economic operation of calcium looping is the availability of highly effective CaO-based CO2 sorbents. Here we report a facile synthesis route that yields hollow, MgO-stabilized, CaO microspheres featuring highly porous multishelled morphologies. As a thermal stabilizer, MgO minimized the sintering-induced decay of the sorbents' CO2 capacity and ensured a stable CO2 uptake over multiple operation cycles. Detailed electron microscopy-based analyses confirm a compositional homogeneity which is identified, together with the characteristics of its porous structure, as an essential feature to yield a high-performance sorbent. After 30 cycles of repeated CO2 capture and sorbent regeneration, the best performing material requires as little as 11 wt.% MgO for structural stabilization and exceeds the CO2 uptake of the limestone-derived reference material by ~500%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。