Microfluidic fabrication of hydrogel microparticles containing functionalized viral nanotemplates

含有功能化病毒纳米模板的水凝胶微粒的微流体制造

阅读:8
作者:Christina L Lewis, Yan Lin, Cuixian Yang, Amy K Manocchi, Kai P Yuet, Patrick S Doyle, Hyunmin Yi

Abstract

We demonstrate rapid microfluidic fabrication of hybrid microparticles composed of functionalized viral nanotemplates directly embedded in polymeric hydrogels. Specifically, genetically modified tobacco mosaic virus (TMV) templates were covalently labeled with fluorescent markers or metalized with palladium (Pd) nanoparticles (Pd-TMV) and then suspended in a poly(ethylene glycol)-based solution. Upon formation in a flow-focusing device, droplets were photopolymerized with UV light to form microparticles. Fluorescence and confocal microscopy images of microparticles containing fluorescently labeled TMV show uniform distribution of TMV nanotemplates throughout the microparticles. Catalytic activity, via the dichromate reduction reaction, is also demonstrated with microparticles containing Pd-TMV complexes. Additionally, Janus microparticles were fabricated containing viruses embedded in one side and magnetic nanoparticles in the other, which enabled simple separation from bulk solution. These results represent a facile route to directly harness the advantages of viral nanotemplates into a readily usable and stable 3D assembled format.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。